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Abstract. Marine primary organic aerosols (POA) are important components of the marine climate system, regulating solar 

radiation budget and cloud dynamics. Despite their importance, there is a lack of extensive long-term observations of POA 

properties, introducing great uncertainty in their parameterization in models. The lack of information originated from the 

complexity of POA chemical composition, very few long-term high-resolution measurements of clean marine air, and the 

difficulty in performing source apportionment techniques over a long-term period. In this study, we utilize a comprehensive 15 

high-resolution time-of-flight aerosol mass spectrometer dataset spanning a decade (2009-2018) and introduce a machine 

learning approach to differentiate and quantify the contribution of marine POA from marine secondary organic aerosol (SOA). 

Results indicate that marine POA concentrations peak during summer months and reach lowest levels in winter. On average, 

marine POA constitutes 51% (ranging from 21% to 76%) of the marine organic aerosol annually and up to 63% (48% to 75%) 

in summer. With the differentiated POA and SOA, we found diverse impacts of POA and SOA on aerosol hygroscopicity and 20 

mixing state. Increase in POA reduces the hygroscopicity and leads to external state of mixing, while the increase in SOA 

sustains the relatively high hygroscopicity and leads to internal mixing. This study provides observational dataset for marine 

POA and SOA and their diverse impacts on aerosol hygroscopicity, emphasizing a better appreciation of marine POA and 

SOA to improve the climate projections. 

1 Introduction 25 

Marine aerosols constitute a large portion of the global aerosol budget and are pivotal in regulating the Earth’s climate system 

(Fitzgerald, 1991; O’Dowd and Leeuw, 2007). It has been known for quite some time that marine aerosols contain a significant 

amount of organic matter (Blanchard, 1964). Cavalli et al. (2004) and O’Dowd et al. (2004) show the great contribution of 

organic matter in the Northeast Atlantic marine aerosol during periods of high biological activities. These marine organic 

aerosol originates from two sources: (1) bubble bursting that scavenges surface-active organic matter and other biogenic 30 
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materials (bacteria, viruses and detritus), producing primary organic aerosol (POA) (Barger and Garrett, 1970; Blanchard, 

1964; Blanchard and Woodcock, 1957); (2) oxidation of marine volatile organic compounds (VOCs) such as dimethyl sulfide, 

aliphatic amines, isoprene and monoterpenes, which can form secondary organic aerosol (SOA) (Bates et al., 1992; Bonsang 

et al., 1988; Charlson et al., 1987; Facchini et al., 2008; Meskhidze and Nenes, 2006; Wohl et al., 2023; Zheng et al., 2020). 

Marine POA is crucial for regulating cloud properties, acting as cloud condensation nuclei (CCN) or ice nuclei (IN). 35 

Ovadnevaite et al. (2011a) documented a marine POA plume with a peak POA concentration of up to 3.8 μg m-3, which is 

comparable to levels found in European continental air. Ovadnevaite et al. (2011b) further highlighted that marine POA has 

low hygroscopicity but high CCN potential. Additionally, sea spray tank experiments have demonstrated a significant 

correlation between seawater nanophytoplankton cell abundances and sea spray CCN number fluxes (Sellegri et al., 2021). 

Incorporating marine POA into global models necessitates a comprehensive understanding of source strength and 40 

environmental response of POA. O’Dowd et al. (2008) proposed an integrated organic-inorganic sea spray source function 

that accounted for a size-dependent contribution of POA to total sea spray aerosol. Further parameterization efforts have 

considered factors such as chlorophyll-a concentration and wind speed (Gantt et al., 2011; Gantt et al., 2012; Rinaldi et al., 

2013), which have been integrated into global chemical transport models. However, the influence of marine biota on the 

chemical composition and cloud activation properties of POA remains a contentious topic. O’Dowd et al. (2015) observed 45 

significant changes in the CCN activities of sea spray aerosol during a phytoplankton plume, whereas Quinn et al. (2014) and 

Bates et al. (2020) reported no substantial alterations in CCN activity. 

In summary, the source intensity, chemical composition, mixing state, and cloud condensation activation potential of marine 

POA remain poorly understood (Gantt and Meskhidze, 2013) with large discrepancies between modelled and measured POA 

(Gantt et al., 2015). A major challenge in improving POA parameterization and modelling is the lack of long-term datasets, 50 

which are critical for both understanding the environmental drivers of POA emissions, and developing emission schemes for 

regional or global chemical transport models. The majority of the available data, such as that in Rinaldi et al. (2013), are 

derived from filter measurements that require extended sampling durations and result in low time resolution (days to weeks). 

Although filter-based methods can distinguish POA from SOA by using chemical molecular fingerprints (O’Dowd et al., 

2004), they suffer from low temporal resolution, limiting their ability to capture dynamic changes in aerosol composition 55 

(minutes to hours). 

The deployment of the Aerosol Mass Spectrometer (AMS) in both coastal and remote marine atmospheres has provided an 

opportunity to improve the POA parameterization and refine model predictions (Choi et al., 2017; Huang et al., 2018; 

Ovadnevaite et al., 2014; Saliba et al., 2020; Sanchez et al., 2020; Schmale et al., 2013; Willis et al., 2017). The AMS enables 

near-real-time measurements of aerosol chemical composition (DeCarlo et al., 2004, 2006), including organic aerosol (OA), 60 

non-sea salt sulfate (nss-SO4), ammonium (NH4), nitrate, methanesulphonic acid (Ovadnevaite et al., 2014) and sea salt 

(Ovadnevaite et al., 2012). While POA and SOA can be differentiated using their mass spectra fingerprints through positive 
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matrix factorization (PMF), this method faces challenges in high time resolution long-term data sets due to the required 

workforce and computational cost (Chevassus et al., 2024). 

In this study, we developed a machine learning (ML) model to differentiate the contributions of marine POA and SOA from 65 

the measured total marine OA, using long-term marine aerosol measurements obtained by an AMS at the Mace Head 

Atmospheric Research Station. This model effectively identified and quantified contributions from the marine POA from SOA. 

The impacts of POA and SOA on aerosol hygroscopicity were then investigated. 

2 Methods 

2.1 Data and instrumentation 70 

Aerosol measurements were conducted at the Mace Head Atmospheric Research Station (53°19′ N, 9°54′ W) on the west coast 

of Ireland from 2009 to 2018. The station, regularly exposed to clean marine air masses from the North Atlantic, has been a 

representative site for studying clean marine aerosols for several decades (O’Dowd et al., 2014). 

We employed a High-Resolution Time-of-Flight AMS (DeCarlo et al., 2004) at Mace Head (Ovadnevaite et al., 2014) to 

measure the PM1 (particulate matter with diameter smaller than 1 μm) chemical composition including organic aerosol (OA), 75 

non-sea-salt sulfate (nss-SO4), sea salt, methanesulfonic acid (MSA) (Ovadnevaite et al., 2014), ammonium (NH4), and nitrate 

(NO3). Additionally, black carbon (BC) was measured using a Multi-Angle Absorption Photometer (MAAP) to trace 

anthropogenic emissions. Meteorological conditions were also recorded, including air temperature, pressure, precipitation, 

relative humidity, wind speed, and wind direction. 

The humidified tandem differential mobility analyzer (HTDMA) (Swietlicki et al., 2000) was used to measure aerosol 80 

hygroscopic growth at a fixed relative humidity of 90% for aerosol with selected dried sizes of 35, 50, 75, 110, and 165 nm. 

The growth factors measured by HTDMA were inverted using a piecewise linear function (Gysel et al., 2009)and converted 

to hygroscopicity parameter κ(Kreidenweis et al., 2008), assuming the surface tension of water-air interface. 

Data from the AMS and MAAP data were averaged to a 10-minute resolution, while the meteorological records were initially 

recorded hourly and later downscaled to 10-minute intervals using linear interpolation to enlarge the dataset’s availability. Any 85 

gaps in the AMS or MAAP data that contain invalid measurements were removed. Hourly boundary layer layer heights were 

obtained from ERA5 (Hersbach et al., 2020) and downscaled to 10-minute resolution using linear interpolation. 

2.2 Clean sector criteria and machine learning strategy 

To differentiate between marine POA and SOA in MHD, this study employs an ML model to predict the mass concentration 

of marine SOA. Subsequently, POA concentrations are obtained by subtracting SOA from the measured total OA. To ensure 90 

the high quality of the SOA production period, we implemented multiple screening criteria to minimize the influence of 
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anthropogenic and marine primary signatures. First, we applied clean sector criteria, limiting BC concentration to less than 15 

ng m-3 and selecting wind direction between 190 and 300 °(O’Dowd et al., 2014), to exclude continental outflows and ship 

plumes. The clean sector criteria, which have been established and applied in various MHD research studies (O’Dowd et al., 

2014; Ovadnevaite et al., 2014; Xu et al., 2022), were employed to isolate marine air masses from anthropogenic influences. 95 

We then applied additional filtering processes to reduce the impact of POA production. We further refined the data by keeping 

instances with wind speed below 6 m/s and sea salt mass concentration under 0.03 μg m-3 to minimize the concentration of 

marine POA. Finally, we retained only those data points where nss-SO4 was the dominant component (nss-SO4/OA > 4) to 

ensure a predominantly secondary source. We presumed that in these selected data, OA was predominantly SOA, with the 

contribution of POA represented by a minor and constant background concentration (POAbg). 100 

Subsequently, we employed a support vector regression (SVR)(Awad et al., 2015) trained on these rigorously selected SOA 

production periods. SVR was chosen for its generlizability in handling small datasets and its resistance to overfitting. Unlike 

tree-based models like random forest (Breiman, 2001), SVR model can predict continuous values. The hyperparameters, 

including the penalty coefficient (C) and gamma (γ) of the Radial Basis Functions (RBF) kernel were tuned via grid research. 

The model targeted OA concentration, using nss-SO4, MSA, NH4, and meteorological parameters (temperature, relative 105 

humidity, boundary layer height, wind direction, and pressure) as predictors. We also included hours of the day to capture 

diurnal variations. Predictors not directly linked to secondary production, e.g., sea salt, NO3, and BC, are excluded to avoid 

over-fitting and ensure generalizability, even though including these might have enhanced the model performance in the 

training dataset. Wind speed was used to select the SOA production period, therefore, it was not suitable as a predictor. A 

summary of the variables employed as predictors is shown in Table 1. 110 

Table 1. Predictors used for SOA ML model. 

Predictors Acronyms Source Rationale 

Hour of the day hour  to capture any diurnal 

pattern 

nss-SO4 SO4 AMS measurement Secondary aerosol marker 

MSA MSA AMS measurement Secondary aerosol marker 

NH4 NH4 AMS measurement Secondary aerosol marker 

Temperature temp Meteorological records Known to influence 

secondary processes 

Rain rain Meteorological records Related to wet removal 

wind direction wddir Meteorological records Related to sources 

Boundary layer height blh ERA5 reanalysis Related to concentration 

 

The selected SOA production periods were split by the year 2015: data before 2015 were used to train the mode. The training 

dataset covered a significant fraction of the variabilities of predictors, as illustrated in Fig. S1. The hyperparameters of the 
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SOA-SVR model were optimized using grid search and 5-fold cross validation. The data after 2015, which was unseen for the 115 

training process, was used to challenge the model’s generalizability. Overall, there are 1700 hours of SOA production period, 

and 477 hours (27.8%) after 2015. 

A schematic diagram of the proposed methodology is shown in Fig. 1. Initially, the clean marine dataset was extracted by 

applying the clean sector criteria, followed by additional filtering processes to minimize the influence of POA. To assess the 

representativeness of the selected data as secondary sources, the Fuzzy C-Means (FCM) clustering method was utilized. 120 

Subsequently, data were divided into training, validation, and test sets for ML, with SOA (including minor POAbg) as the 

predictive variable. To mitigate experimental uncertainties, cross-validation and Monte Carlo simulations were performed. 

The study further investigated the magnitude of the POAbg values. Finally, ML method was applied to predict SOA 

concentrations, enabling the differentiation of POA concentrations within the total marine OA. 
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 125 

Figure 1. The proposed data processing and model construction workflow. POAbg represents the assumed constant POA background 

concentration. ML (chem + met + time) represents the machine learning model that uses chemical composition, meteorological and 

time parameters as predictors. 

2.3 Fuzzy-C Means clustering 

FCM is a clustering algorithm that enables the grouping of data points into multiple clusters with varying degrees of 130 

membership. Unlike traditional hard clustering techniques, where each data point is assigned to a single cluster, FCM assigns 

membership levels to each data point, indicating the degree to which it belongs to each cluster. This soft clustering approach 
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is particularly useful when dealing with complex datasets where boundaries between clusters are not well-defined or overlap 

significantly. By optimizing an objective function that minimizes the weighted sum of squared errors, FCM iteratively updates 

the cluster centers and membership degrees, providing a flexible and robust means of uncovering underlying patterns and 135 

structures within data. 

3 Results and Discussions 

3.1 Performance of ML model in SOA production period 

We first examined the aerosol composition in the selected secondary marine aerosol dataset. In these SOA production period, 

nss-SO4 constituted 68.9 ± 8.7% of the PM1 mass, followed by OA at 12.1 ± 3.4%, and MSA at 6.8 ± 4.0%. The average 140 

concentration of sea salt and wind speed were 0.015 ± 0.009 μg m-3 and 4.6 ± 1.2 m/s, respectively. The MSA to nss-SO4 ratio 

was 0.10 ± 0.06, aligning with previous findings at the same site (Ovadnevaite et al., 2014). BC concentrations remained well 

below the 15 ng m-3 threshold, averaging at 6.0 ± 3.7 ng m-3. Taken together, this chemical composition indicates the selected 

data mainly originated from secondary sources. 

To ensure the representativeness of the selected training data as secondary sources, we applied FCM method on the clean 145 

marine dataset to identify the characteristics of chemical and meteorological parameters from typical sources. Compared to 

more conventionally used k-means clustering, FCM allows data instances to belong to multiple clusters with varying degrees 

of membership (or probability). The membership is used to determine how strongly each data instance belongs to each cluster. 

The FCM clustering, which is independent of the selection of SOA production periods, provides further validation and 

examination of the data selection for model training. We selected those with any cluster membership higher than 80% to show 150 

the clustering center of each cluster. As shown in Fig. S2a, the 2nd factor, which is featured by low sea-salt, low wind speed 

and high temperature, is most likely to be of the secondary origin. This factor also showed high MSA and nss-SO4, supporting 

the selection criteria for SOA production period. Indeed, the highest possibility of the selected training data is found to be the 

2nd factor (Fig. S2b), reaffirming the SOA production characteristics. 

Subsequently, we employed the SVR model, leveraging the clean marine dataset, to predict OA (SOA + POAbg) concentrations. 155 

Cross-validation yields Pearson’s R of 0.97 for training and validation datasets, demonstrating the model’s accuracy in 

predicting OA concentration using the selected predictors. The slopes between estimated SOA +POAbg and measured OA were 

0.97 for both the train and validation data, indicating robust pattern recognition across most concentration ranges. The model 

also exhibited great generalizability and performed consistently well on an unseen dataset (Fig. 2c), with a Pearson’s R value 

of 0.94 and a slope of 0.98 between observed OA and estimated SOA + POAbg, reaffirming the model’s efficacy in modeling 160 

the complex dynamics of SOA. 
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Figure 2. Observed OA versus predicted (SOA +POAbg) for (a) training, (b) validation and (c) test datasets. Data density is illustrated 

using a color gradient with darker colour indicating lower data density. Black lines denote the 1:1 correspondence lines, blue lines 

represent regression lines. 165 

Permutation importance analysis highlighted nss-SO4 and MSA as the most influential variables, followed by NH4 (Fig. S3a). 

Partial dependent plots (Fig. S3b) indicate a nonlinear relationship between SOA and increasing levels of nss-SO4 and MSA. 

While these plots do not imply a causal relationship, they highlight the complexity of the interactions and underscore the 

importance of employing a machine learning model to effectively capture such intricate patterns. Various meteorological 

parameters were also found to influence SOA concentration, especially relative humidity and precipitation, but to a lower 170 

extent. 

In this study, one of the major assumptions of this approach is to assume that the OA in the selected secondary marine data for 

training the model is dominated by SOA. To evaluate the potential influence of POA contributions in those secondary marine 

data cases on entire clean marine dataset, we conducted a sensitivity analysis. We assumed that POAbg constitutes 5% to 30% 

of OA. As shown in Fig. S4, compared to the original assumption, the monthly averaged concentration of POA systematically 175 

increased throughout most of the year, except during winter, when alternative assumption predicted POA concentrations lower 

than 0, which is, of course, non-physical. Then, we applied the model on the entire clean marine dataset and tried different 

fixed POAbg values iteratively. As shown in Fig. S5, the POAbg of 0.01 μg m-3 yields the least nonphysical predictions (either 

POA or SOA lower than 0). Therefore the POAbg of 0.01 μg m-3 was used in the following calculation. Based on this strategy, 

SOA concentrations were predicted, enabling the estimation of POA concentrations. Furthermore, if POA production period 180 

is defined as periods with POA concentrations exceeding 0.1 µg m-3 for more than 12 hours, there were more than 60 such 

POA production periods during the 10-year period (Fig. S6). Detecting these POA production periods allows for detailed 

characterization, potentially enhancing its parameterization. 
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Note that the measurement itself contains relatively large uncertainty, compared to summertime measurement. Indeed, we 

manually tuned the POAbg value to minimize the negative values. This is supported by previous studies that marine is a large 185 

organic pool (Quinn et al., 2014). Given the inherent uncertainties in aerosol measurements, as well-documented in previous 

study (Ovadnevaite et al., 2014), we further quantified the uncertainties associated with ML model using Monte Carlo 

simulations. To do this, we performed a robustness test by randomly validating the model 1000 times, each time excluding 

20% of the data from the training set. The lower and upper limits of the estimated POA seasonality are shown in Fig. S7, which 

is similar to the original model. The Monte Carlo ensembles demonstrated negligible differences in the contribution of POA, 190 

indicating stable model performance across different scenarios. 

To validate the ML-based POA concentrations, we further compared it with PMF-based POA concentrations from Chevassus 

et al. (2024). The PMF-based source apportionment was conducted for about one month. The Pearson’s correlation coefficient 

between ML-based POA and PMF-based POA was about 0.91, indicating strong agreement between the two methods (Fig. 3). 

Compared to the conventional AMS-based OA source apportionment techniques, e.g. PMF, this ML approach requires 195 

significantly fewer computational resources and is less dependent on detailed knowledge of the mass spectra signatures of 

marine POA and SOA. For example, the model performed equally well even after removing MSA as a predictor (Fig. S8). 

Given that MSA can only be resolved by high-resolution AMS, this suggests that our approach could be extended to Aerosol 

Chemical Species Monitor (ACSM) data, which is more affordable and widely used but has lower mass resolution. This would 

enable broader applications of our method, offering a more comprehensive understanding of marine POA over global oceans. 200 

Finally, although secondary production of OA and nss-SO4 rely on similar meteorological conditions, it should be noted that 

many marine VOC species do not share the same sources and oxidization pathways as DMS and its derivatives. For example, 

some VOCs are produced by different organisms or abiotically from sea surface microlayer (Ciuraru et al., 2015; Mungall et 

al., 2017), which could introduce additional uncertainty in the SOA quantification based on high nss-SO4 periods, which adds 

to the uncertainty for POA attribution as well. 205 
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Figure 3. The comparison between machine learning-derived POA and HR-PMF POA. The HR-PMF POA data is taken from 

Chevassus et al. (2024). The blue line is regression line and grey area represents 95% confidence interval. The black line represents 

1:1 line. Pearson’s correlation coefficient and the equation of regression line are shown in the top left. 

3.2 Case study and long-term seasonality 210 

The evaluation of the model’s performance has shown a clear relationship between SOA and the predictor variables in the 

chosen SOA production period. Assuming there is little and constant contribution from POAbg, the estimated SOA 

concentration should be similar to the measured OA. We then evaluated the model’s performance in well-defined cases over 

finer time scales. During a typical SOA production period from 11st to 14th August 2011 (Fig. 4a), which was not included in 

the training dataset because of the slightly elevated sea salt above the threshold of 0.03 μg m-3, the measured OA closely 215 

followed the variation of nss-SO4 and MSA, with Pearson’s R values of over 0.80 and 0.84, respectively. These high 

correlations indicate a predominant secondary source of OA. The model’s estimates of SOA concentrations were very close 

to the measured total OA (Fig. 4b), with an OA/SOA ratio of 1.03 ± 0.04. This further suggests that the ML model is able to 

predict the variability of SOA. 

In contrast, during a well-documented marine POA plume, from 13rd to 18th August 2009 (Fig. 4c), the OA dominated the PM1 220 

concentration and showed little correlation with nss-SO4 or MSA (Pearson’s R of 0.05 and 0.08, respectively). Notably, the 
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estimated SOA deviates significantly from the observed OA (Fig. 4d). In this instance, the SOA estimated by the ML model 

accounted for only about 20% of the total OA during the plume, underscoring the significant contribution of marine POA. The 

different performance, presented in Fig. 4, is expected. In Fig. 4a, the model is mostly influenced by the nss-SO4, a marker for 

secondary species, leading to a great agreement between modelled SOA and observed OA. Conversely, Fig. 4b shows a 225 

significant discrepancy between modelled SOA and observed OA. The difference is largely attributed to the contribution of 

POA. This case was reported by Ovadnevaite et al. (2011a), in which the marine POA was identified using HR-ToF-AMS 

mass spectra, and the SOA during the period was not quantified. 

 

Figure 4. Case study of (a-b) SOA production period and (c-d) POA production period. (a,c) time series of PM1 chemical species and 230 

(b,c) measured OA versus estimated SOA, the colour presents data density with darker colour indicating lower data density, the 

black lines represent 1:1 lines. 

The cases of SOA and POA production periods indicate the model’s capability to predict the SOA and POA levels. As 

illustrated in Fig. 5, both POA and SOA reached their peak in June and dropped to their lowest during the winter months. 

Typically, median concentrations of SOA were higher than those of POA across most months, except for May. However, POA 235 

concentrations spiked periodically, highlighted by outliers. The mean relative contribution of POA to total OA, detailed in Fig. 

5b, shows the lowest contribution in winter and the largest from May to July, peaking at approximately 50% and slightly later 

in summer than SOA. The pattern corresponds with the enhanced marine activities in later spring and early summer of the 

North Atlantic, involving extensive phytoplankton proliferation and other marine organisms that release organic matter into 

the atmosphere through wave breaking and bubble bursting. 240 
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It is important to note that the total marine OA concentrations during winter at Mace Head are very low, introducing substantial 

uncertainty in OA separation during this season. The minimal POA concentration observed in winter suggests a distinct 

relationship between total OA, secondary species, and environmental factors. This relationship closely mirrors the dynamics 

observed in SOA. As shown in Fig. S9, the estimated SOA closely aligns with measured OA throughout the winter, pointing 

to low contribution from POA. Conversely, during the summer, numerous data points shown in Fig. S9 deviate to the right of 245 

the 1:1 lines, indicating a substantial contribution from POA. 

 

Figure 5. The seasonality of POA and SOA. (a) boxplot of mass concentration of POA (dark green) and SOA (purple), the horizontal 

lines represent median, the boxes represent 25th and 75th quantile, and the whiskers represent 1.5 inter-quarter ranges. Note that 

outliers are not fully shown to ease to visualization. (b)The contribution of POA to total OA, the line represents the monthly median, 250 

and the shaded area represents the 25th and 75th quantile. 

The differentiation of POA from SOA is further substantiated by additional correlation analysis. As shown in Fig. S10, the 

correlation between OA and nss-SO4 across the entire clean marine dataset is relatively low, at approximately 0.17, suggesting 

that nss-SO4 explains less than 3% of the variability of marine OA. Upon decoupling the OA into POA and SOA, we observed 

distinct correlation patterns: the correlation between SOA and nss-SO4 increased to 0.88, reflecting a strong linkage. Whereas 255 

for POA, it decreased to 0.08. This stark contrast underscores the different sources and atmospheric behaviors of marine POA 

and SOA. This different correlation analysis provides a clear delineation of how POA and SOA contribute to marine OA and 

emphasizes the capacity of advanced modeling techniques and long-term observations to unravel complex atmospheric 

processes. 

The potential sources of POA and SOA were investigated using the Potential Source Contribution Function (PSCF) combined 260 

with air mass backward trajectories (Mansour et al., 2020). As shown in Fig. 6, POA likely originates from the Northeast 
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Atlantic polar marine regions (Fig. 6a), which are recognized as biologically active waters. In contrast, SOA sources are traced 

to tropical marine regions (Fig. 6b). The identified POA sources align with previous studies suggesting that regional marine 

biological activity is a key driver of POA production (O’Dowd et al., 2004; Sellegri et al., 2021). For SOA, enhanced 

photochemical reactions in lower-latitude waters likely promote the formation of secondary species. The distinct source regions 265 

of marine POA and SOA underscore the need for models to incorporate specific parameterisation schemes that account for 

these spatial and mechanistic differences. 

 

Figure 6. The potential source contribution function analysis of marine POA (a) and SOA (b). Redish colour represents higher 

probability. 270 

In contrast to prior studies that relied on filter-based measurements with limited temporal resolution, this study introduces a 

ML framework to systematically differentiate and quantify marine POA and SOA. While seasonal variations in POA/SOA 

have been reported previously, our decade-long dataset—the most extensive of its kind to date—provides unprecedented 

resolution to constrain and develop POA and SOA parameterization for climate models. Furthermore, the distinct source 

regions identified for POA (polar marine zones) and SOA (tropical waters) underscore their divergent formation mechanisms. 275 

Current model estimated of global emissions of POA span from 6.9 - 76 Tg year-1 for <1 μm emissions and global source of 

SOA were thought to be substantially smaller than marine POA. Our measurements found similar contribution of POA and 

SOA. While it has to be noted that some fractional of SOA were transformed via atmospheric aging from POA, which is 

difficult to quantified. Recent study found the photochemical reactions in the sea-air interface produces substantial VOC as 

the precursors of marine SOA (Brüggemann et al., 2018), the complex sources of SOA highlights the need for field 280 

observational data to challenge the models. The combined sensitivity to marine biological activities and photochemistry of 

marine OA was also supported by Sanchez et al. (2020), which found high correlation with downward shortwave flux and net 

primary production, while they did not separate POA and SOA. 
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3.3 Impact of marine organic aerosol to aerosol hygroscopicity and mixing state 

The long-term marine POA and SOA time series now enable an assessment of their influence on aerosol hygroscopicity —a 285 

relationship previously uncertain. As shown in Fig. 7, increasing POA concentrations from 0.1 to 1 μg m⁻³ reduces the 

hygroscopicity parameter (κ) across all particle sizes, dropping values from ~0.5 to below 0.25. This finding contrasts with 

earlier experimental work suggesting POA production has negligible effects on aerosol hygroscopicity and CCN activity 

(Quinn et al., 2014), but aligns with our prior case study highlighting the inherently low hygroscopicity of POA 

(Ovadnevaite et al., 2011b). Quinn et al. (2014) investigated the impact of marine POA on its cloud condensation nuclei 290 

using a sea sweep devices, they found no significant difference of POA contribution at different oceanic regions with diverse 

ranges of chlorophyll-a, and they attributed the POA to the ocean carbon pool. However, based on our field measurements, it 

is unlikely that ocean carbon pool induces such large variations of the observed POA, underscoring the importance of 

oceanic biological activities. 

As for the SOA, the increasing SOA concentrations from 0.1 to 0.3 μg m⁻³ only slightly reduce κHTDMA values (from 0.5 to 295 

0.45) for particles between 50 and 165 nm, with no significant change observed for 35 nm particles. This muted response may 

arise from co-varying increases in secondary species such as nss-SO₄²⁻ or MSA, which help maintain hygroscopicity at 

relatively high levels. This is consistent with our recent high-temporal online measurement, which shows a simultaneous 

increase in SOA and nss-SO4
2- during particle growth(Xu et al., 2024; Zheng et al., 2020). These results underscore the distinct 

roles of POA and SOA in modulating aerosol water uptake and cloud-forming potential, emphasizing the need to explicitly 300 

represent OA composition and sources in climate models. 
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Figure 7. The impact of POA (a) and SOA (b) on aerosol hygroscopicity parameter (κHTDMA) at different sizes. The analysis was 

limited to April to August to minimize the seasonal variations. The black lines represent medians, dark shaded areas represent 25th 

to 75th percentiles, darker shaded areas represent 10th to 90th percentiles. 305 

The influence of POA and SOA on aerosol mixing state was further investigated using the spread factor, calculated from 

growth-factor probability density functions (Xu et al., 2020). A spread factor of 0 indicates a theoretically internal mixture, 

while higher values reflect increasing external mixing. Based on established thresholds (Swietlicki et al., 2008; Xu et al., 

2019), a spread factor of ≤0.05 is classified as internal mixture, whereas values ≥0.2 signify external mixing. POA and SOA 

exhibit divergent impacts on aerosol mixing state. As shown in Fig. 8a, increasing the POA contribution from 0% to 100% 310 

elevates the spread factor, suggesting POA production promotes external mixing. Conversely, SOA accumulation drives the 
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system toward a more internally mixed state. This aligns with aerosol aging processes, where particles tend to homogenize 

over time. Accurately representing the hygroscopicity and mixing-state dynamics of POA and SOA is critical for assessing 

their climatic impacts, as these properties directly influence aerosol-cloud interactions and radiative forcing. 

 315 

Figure 8. The impact of percentage contribution of POA (a) and SOA (b) to aerosol mixing state (spread factor) at different sizes. 

The analysis was limited to April to August to minimize the seasonal variations. The black lines represent medians, dark shaded 

areas represent 25th to 75th percentiles, darker shaded areas represent 10th to 90th percentiles. 
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4 Conclusion 

Quantifying marine POA and SOA traditionally relies on PMF applied to aerosol mass spectra, which is challenging for long-320 

term data. This study presents a data-driven ML framework to identify and quantify marine POA by leveraging temporal data 

patterns rather than chemical mass signatures. The ML model, trained on rigorously selected SOA-dominated periods, was 

applied to a multi-year aerosol dataset, enabling the identification of numerous POA production events. At Mace Head, marine 

POA constitutes ~50% of total marine organic aerosol (OA), increasing to 63% during late spring and early summer. Unlike 

PMF, this ML approach proves particularly effective for disentangling OA components in complex, long-term environments 325 

where high-resolution AMS data are unavailable. 

Combined with aerosol hygroscopicity measurements, our analysis reveals distinct climatic impacts: marine POA significantly 

reduces aerosol hygroscopicity and promotes external mixing, whereas SOA exhibits weaker effects. These findings 

underscore the need to accurately quantify marine POA abundance and its influence on cloud-relevant properties. A key 

limitation lies in the selection of SOA-dominated periods for model training; future work should optimize ML performance 330 

for smaller or less curated datasets. Additionally, validating these marine POA results with global oceanic measurements is 

essential to refine POA parameterizations in climate and chemical transport models.  
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